18	He 4.00	10	Ne	20.18	18	Ar	39.95	36	Kr	83.80	54	Xe	131.29	86	Rn		118	Og	71	Lu	174.97	103	\mathbf{Lr}	
	17	6	H	19.00	17	CI	35.45	35	Br	79.90	53	Ι	126.90	85	At		117	Ts	70	Yb	173.05	102	No	
	16	∞	0	16.00	16	\mathbf{N}	32.06	34	Se	78.97	52	Te	127.60	84	$\mathbf{P_0}$		116	Lv	69	\mathbf{Tm}	168.93	101	Md	
	15	2	Ζ	14.01	15	Р	30.97	33	\mathbf{As}	74.92	51	Sb	121.76	83	Bi	208.98	115	Mc	68	Er	167.26	100	Fm	
STN	14	9	C	12.01	14	Si	28.09	32	Ge	72.63	50	Sn	118.71	82	Pb	207.2	114	F	67	Ho	164.93	66	Es	
ME	13	5	B	10.81	13	N	26.98	31	Ga	69.72	49	In	114.82	81	II	204.38	113	ЧN	99	Dy	162.50	98	Cf	
ELE						<u></u>	17	30	Zn	65.38	48	Cd	112.41	80	Hg	200.59	112	Cn	65	$\mathbf{T}\mathbf{b}$	158.93	76	Bk	
HE						,	11	29	Cu	63.55	47	Ag	107.87	79	Au	196.97	111	Rg	64	Gd	157.25	96	Cm	
DF T						10	10	28	Ni	58.69	46	Pd	106.42	78	Pt	195.08	110	Ds	63	Eu	151.97	95	Am	
LE (C	У	27	Co	58.93	45	Rh	102.91	LL	Ir	192.22	109	Mt	62	Sm	150.36	94	Pu	
[AB]						0	0	26	Fe	55.85	44	Ru	101.07	76	Os	190.23	108	Hs	61	Pm		93	Np	
						٢	/	25	Mn	54.94	43	Tc		75	Re	186.21	107	Bh	60	Nd	144.24	92	N	238.03
IOD						9	0	24	Cr	52.00	42	\mathbf{M}_{0}	95.95	74	M	183.84	106	Se	59	\mathbf{Pr}	140.91	91	Pa	231.04
PER						V	C	23	Λ	50.94	41	Nb	92.91	73	Ta	180.95	105	Db	58	Ce	140.12	90	\mathbf{Th}	232.04
						~	4	22	Ti	47.87	40	Zr	91.22	72	Hf	178.49	104	Rf	57	La	138.91	89	Ac	
						6	C	21	Sc	44.96	39	Υ	88.91		57-71	*		89-103		noids			noids	
	0	4	Be	9.01	12	Mg	24.30	20	Ca	40.08	38	Sr	87.62	56	Ba	137.33	88	Ra		*Lantha			†Acti	
	H 1.008	з	Li	6.94	11	Na	22.99	19	K	39.10	37	Rb	85.47	55	Cs	132.91	87	Fr						

AP® CHEMISTRY EQUATIONS AND CONSTANTS

Throughout the exam the following symbols have the definitions specified unless otherwise noted.

L, mL = liter(s), milliliter(s) g = gram(s) nm = nanometer(s) atm = atmosphere(s)	mm Hg = millimeters of mercury J, kJ = joule(s), kilojoule(s) V = volt(s) mol = mole(s)
ATOMIC STRUCTURE E = hv $c = \lambda v$	$E = \text{energy}$ $\nu = \text{frequency}$ $\lambda = \text{wavelength}$ Planck's constant, $h = 6.626 \times 10^{-34} \text{ J s}$ Speed of light, $c = 2.998 \times 10^8 \text{ m s}^{-1}$ Avogadro's number = $6.022 \times 10^{23} \text{ mol}^{-1}$ Electron charge, $e = -1.602 \times 10^{-19}$ coulomb
EQUILIBRIUM $K_{c} = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}, \text{ where } a \text{ A} + b \text{ B} \rightleftharpoons c \text{ C} + d \text{ D}$ $K_{p} = \frac{(P_{C})^{c}(P_{D})^{d}}{(P_{A})^{a}(P_{B})^{b}}$ $K_{a} = \frac{[H^{+}][A^{-}]}{[HA]}$ $K_{b} = \frac{[OH^{-}][HB^{+}]}{[B]}$ $K_{w} = [H^{+}][OH^{-}] = 1.0 \times 10^{-14} \text{ at } 25^{\circ}\text{C}$ $= K_{a} \times K_{b}$ $pH = -\log[H^{+}], pOH = -\log[OH^{-}]$ $14 = pH + pOH$ $pH = pK_{a} + \log\frac{[A^{-}]}{[HA]}$ $pK_{a} = -\log K_{a}, pK_{b} = -\log K_{b}$	Equilibrium Constants K_c (molar concentrations) K_p (gas pressures) K_a (weak acid) K_b (weak base) K_w (water)
KINETICS $[A]_{t} - [A]_{0} = -kt$ $\ln[A]_{t} - \ln[A]_{0} = -kt$ $\frac{1}{[A]_{t}} - \frac{1}{[A]_{0}} = kt$ $t_{1/2} = \frac{0.693}{k}$	k = rate constant t = time $t_{1/2} = \text{half-life}$

GASES, LIQUIDS, AND SOLUTIONS $PV = nRT$ $P_A = P_{\text{total}} \times X_A, \text{ where } X_A = \frac{\text{moles } A}{\text{total moles}}$ $P_{total} = P_A + P_B + P_C + \dots$ $n = \frac{m}{M}$ $K = ^{\circ}C + 273$ $D = \frac{m}{V}$	$P = \text{pressure}$ $V = \text{volume}$ $T = \text{temperature}$ $n = \text{number of moles}$ $m = \text{mass}$ $M = \text{molar mass}$ $D = \text{density}$ $KE = \text{kinetic energy}$ $v = \text{velocity}$ $A = \text{absorbance}$ $\varepsilon = \text{molar absorptivity}$ $b = \text{path length}$ $c = \text{concentration}$
$KE_{\text{molecule}} = \frac{1}{2}mv^2$ Molarity, M = moles of solute per liter of solution $A = \varepsilon bc$	Gas constant, $R = 8.314 \text{ J mol}^{-1} \text{K}^{-1}$ = 0.08206 L atm mol ⁻¹ K ⁻¹ = 62.36 L torr mol ⁻¹ K ⁻¹ 1 atm = 760 mm Hg = 760 torr STP = 273.15 K and 1.0 atm Ideal gas at STP = 22.4 L mol ⁻¹
THERMODYNAMICS / ELECTROCHEMISTRY $q = mc\Delta T$ $\Delta S^{\circ} = \sum S^{\circ} \text{ products} - \sum S^{\circ} \text{ reactants}$ $\Delta H^{\circ} = \sum \Delta H_{f}^{\circ} \text{ products} - \sum \Delta H_{f}^{\circ} \text{ reactants}$ $\Delta G^{\circ} = \sum \Delta G_{f}^{\circ} \text{ products} - \sum \Delta G_{f}^{\circ} \text{ reactants}$ $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$ $= -RT \ln K$ $= -nFE^{\circ}$ $I = \frac{q}{t}$ $E_{cell} = E_{cell}^{\circ} - \frac{RT}{nF} \ln Q$	$q = heat$ $m = mass$ $c = specific heat capacity$ $T = temperature$ $S^{\circ} = standard entropy$ $H^{\circ} = standard enthalpy$ $G^{\circ} = standard Gibbs free energy$ $n = number of moles$ $E^{\circ} = standard reduction potential$ $I = current (amperes)$ $q = charge (coulombs)$ $t = time (seconds)$ $Q = reaction quotient$ Faraday's constant, $F = 96,485$ coulombs per mole of electrons $1 \text{ volt} = \frac{1 \text{ joule}}{1 \text{ coulomb}}$