Rational and Irrational Numbers

Objective To identify types of rational numbers • To find square roots of perfect squares To approximate square roots of nonperfect squares
 To recognize irrational numbers

During a 4-month period, an environmentalist recorded the following changes to a lake's water level: 4 in., $-2\frac{1}{4}$ in., 0.41 in., and $\frac{3}{8}$ in.

The numbers recorded above are rational numbers.

 \triangleright A rational number is the quotient of two integers, a and b, written $\frac{a}{b}$, with $b \neq 0$.

All of the following types of numbers are rational numbers.

- *Integers*, which are whole numbers and their opposites, are represented by the set $\{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$.
- Fractions and mixed numbers, such as $\frac{3}{8}$, $-\frac{11}{7}$, and $2\frac{1}{4}$, can be positive or negative.
- Decimals can also be positive or negative. They are either terminating or repeating.

Terminating decimals, such as 0.41, 3.0, -5.7, have a finite number of digits.

Repeating decimals, like the examples that follow, have a sequence of one or more digits that repeat indefinitely.

2.333..., which can be written as
$$2.\overline{3}$$
, and $-0.636363...$, or $-0.\overline{63}$

Use an ellipsis (three dots) or use an overbar to show that one or more digits repeat in a decimal.

Multiplying a number by itself, or raising it to the second power, is finding the square of that number. Some examples are given below.

square of
$$\frac{3}{8} \longrightarrow \left(\frac{3}{8}\right)^2 = \frac{3}{8} \cdot \frac{3}{8} = \frac{9}{64}$$
 square of $-7 \longrightarrow (-7)^2 = -7 \cdot -7 = 49$

square of
$$-7 \longrightarrow (-7)^2 = -7 \cdot -7 = 49$$

square of
$$0.5 \rightarrow (0.5)^2 = 0.5 \cdot 0.5 = 0.25$$
 opposite of the square of $4 \rightarrow -4^2 = -(4 \cdot 4) = -16$

opposite of the square of
$$4 \rightarrow -4^2 = -(4 \cdot 4) = -16$$

Perfect squares, or square numbers, are the squares of natural numbers. Some examples of perfect squares are shown in the table below.

Natural Number	1	2	3	4	5	6	7	8	9	10
Square of the Number	1 ²	2 ²	3 ²	4 ²	5 ²	6 ²	7 ²	8 ²	9 ²	10 ²
Perfect Square	1	4	9	16	25	36	49	64	81	100

The set of perfect squares is $\{1, 4, 9, 16, 25, 36, 49, 64, 81, 100, \ldots\}$.

A square root of a number is one of two equal factors of that number. The positive square root of a number is called the principal square root. It is indicated with the symbol $\sqrt{\ }$, called a radical sign. The expression under a radical sign is called the radicand. The negative square root of a number is indicated by writing a negative sign in front of the radical.

$$\sqrt{25} = \sqrt{5 \cdot 5} = 5$$
 principal square root $-\sqrt{25} = -5$ negative square root Read as "the principal square root of 25."

Remember:

Natural, or Counting, Numbers: $\{1, 2, 3, 4, \ldots\}$

Whole Numbers: {0, 1, 2, 3, 4, . . . }

Every integer a can be written as $\frac{a}{4}$.

Examples

Find each square root.

Remember: The prime factorization of a number shows the number as the product of prime factors.

$$\sqrt{\frac{4}{9}}$$

$$\sqrt{\frac{4}{9}} = \sqrt{\left(\frac{2}{3}\right)^2}$$

$$= \sqrt{\frac{2}{3} \cdot \frac{2}{3}} = \frac{2}{3}$$
Think...
What number squared equals $\frac{4}{9}$?

To approximate the square root of a nonperfect square, a number that is not the square of a natural number, find two consecutive integers that the square root is between.

Between what two consecutive integers is $\sqrt{19}$?

19 is between 16 and 25. ← Find two nearby perfect squares that 19 is between.

 $\sqrt{19}$ is between $\sqrt{16}$ and $\sqrt{25}$.

$$\sqrt{16} = 4$$
 and $\sqrt{25} = 5$ Find each square root.

So $\sqrt{19}$ is between 4 and 5.

Think

The perfect squares in order are 1, 4, 9, 16, 25, 19 is between 16 and 25.

Irrational Numbers

- Square roots of nonperfect squares are examples of numbers that are not rational. Numbers that are not rational are called *irrational*. The following are <u>irrational numbers</u>.
 - positive or negative decimals that are *nonterminating* and nonrepeating or have a pattern in their digits but do not repeat exactly.

$$4.13216582..., -0.5050050005...$$

- square roots of nonperfect squares $\sqrt{42}, -\sqrt{250}$
- pi, symbolized by the Greek letter π (3.14 and $\frac{22}{7}$ are rational approximate values.)

Try These

For each number, list all the terms that apply: whole number, integer, rational number, and irrational number.

Key Concept

Irrational numbers are numbers that cannot be expressed in the form $\frac{a}{h}$,

where a and b are integers and $b \neq 0$.

5.
$$\frac{22}{7}$$

6.
$$\sqrt{144}$$

7.
$$-\sqrt{36}$$

8.
$$\sqrt{102}$$

Find each square root. If the radicand is a nonperfect square, between which two consecutive integers would the square root fall?

9.
$$\sqrt{400}$$

10.
$$\sqrt{205}$$

11.
$$-\sqrt{\frac{49}{81}}$$

12.
$$-\sqrt{77}$$

- **13.** A contractor is building a patio in the shape of a square. The patio will cover 945 square feet. Estimate the length of the side of the patio to the nearest integer.
- **14. Discuss and Write** Which of these numbers is irrational: $\sqrt{36}$, $\sqrt{\frac{1}{36}}$, $\sqrt{3.6}$? Explain.