1-2 The Set of Real Numbers

Name ______ Date _____

Determine if the set of positive multiples of 5 is *closed* under subtraction.

 $\{5, 10, 15, 20, 25, \ldots\}$ \leftarrow Identify the elements of the set.

10 - 5 = 5 Test a case. Subtract two elements of the set.

-5 is not an element of the set.

No, the set of positive multiples of 5 is *not* closed under subtraction.

Use a number line to order the numbers -2, $-\frac{3}{2}$, $-\sqrt{9}$, -|-1| from least to greatest.

The farther to the right a number is on the number line, the greater it is.

Read the order from least to greatest: $-\sqrt{9}$, -2, $-\frac{3}{2}$, -|-1|

Give an example to illustrate the type of number described.

1. a real number that is irrational

2. a whole number that is not a natural number

5.010010001...

3. a rational number with a terminating decimal

4. a real number with a nonperfect square radicand

Determine if each set of numbers is *closed* under the indicated operation. If it is *not closed*, give a counterexample.

- **5.** {0, 1, 2}; subtraction
- **6.** {Real Numbers}; addition
- **7.** {10, 11, 12}; subtraction

- not closed 1-2=-1 -1 is not an element of the set.
- **8.** {0, 1, 2}; multiplication
- **9.** {4, 6, 8}; multiplication
- **10.** {integers}; division

- **11.** {odd integers}; addition
- **12.** {natural numbers}; addition
- **13.** {whole numbers}; division

Find the value of each expression.

14.
$$-(-19.8)$$

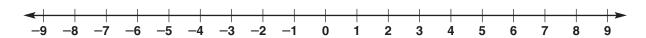
15.
$$3.05 + (-3.05)$$

16.
$$-|\sqrt{25}|$$

17.
$$|-\sqrt{36}| - (-\sqrt{36})$$

19.8

18.
$$-(-4.2) + |-7.5|$$
 19. $-|4\frac{1}{2} \cdot 2|$


19.
$$-|4\frac{1}{2} \cdot 2|$$

20.
$$|\sqrt{25}| - |-\sqrt{25}|$$

22.
$$|-2| - (-15)$$

22.
$$|-2| - (-15)$$
 23. $|-\sqrt{64}| - (-\sqrt{81})$ **24.** $-(-12) - |-6|$

Use the number line to compare and order each set of numbers from least to greatest.

26.
$$|7+2|$$
, -6 , -5.4 , -0.8 , $\sqrt{25}$, $\frac{9}{2}$
 $|7+2| = 9$, $\sqrt{25} = 5$, $\frac{9}{2} = 4.5$
 -6 , -5.4 , -0.8 , $\frac{9}{2}$, $\sqrt{25}$, $|7+2|$

27.
$$-\frac{7}{4}$$
, $-|3|$, -1.9 , -2 , $-\sqrt{16}$, $-1.\overline{4}$

28.
$$-\frac{6}{3}$$
, -3.21, 5, $-\sqrt{49}$, -1. $\overline{23}$, |-2|

29.
$$-\sqrt{1}$$
, $0, -\frac{5}{4}, -1.5, -1.\overline{09}, -|4|$

30.
$$-\sqrt{36}$$
, -6.9 , $-\frac{25}{4}$, $8.\overline{3}$, $-|10-2|$, 9

31.
$$-\frac{19}{7}$$
, -2.9, -4, -2. $\overline{85}$, $-\sqrt{4}$, -|5 - 2|

Problem Solving

- **32.** Three negative numbers are labeled a, b, and c. List the numbers from least to greatest if |a| > |c| and b > c. Explain your reasoning.
- **33.** The set of numbers $\{0, 1\}$ is closed for which operations: addition, subtraction, multiplication, division?

CRITICAL THINKING

34. A new operation is defined as $a \cdot b = a + a - b$. Is the set of whole numbers closed under the operation ♦? If not, give a set that is closed under this operation.