Add and Subtract Real Numbers

Objective To model addition of signed numbers on a number line • To apply rules for adding and subtracting signed numbers

An oil well has been dug to a depth of 1.7 miles. Additional drilling makes the well 1.2 miles deeper. What signed number expresses the final depth of the well?

To find the signed number, add: -1.7 + (-1.2)

Think.
$$-2 + (-1) = -3$$

Then add the actual numbers.

- You can add signed numbers by using a number line.
 - Start at 0.
 - Move *left* for negative numbers. Move *right* for positive numbers.
- Add signed numbers the same way you add integers.

Add with Like Signs

Add: -1.7 + (-1.2)

So
$$-1.7 + (-1.2) = -2.9$$
 Both addends are negative. The sum is negative.

The final depth of the well is 2.9 miles (-2.9).

Add with Unlike Signs

Then add the actual numbers.

Add:
$$1\frac{7}{8} + \left(-3\frac{2}{3}\right)$$

First estimate by rounding: $1\frac{7}{8} + \left(-3\frac{2}{3}\right) \approx -2$ Think... 2 + (-4) = -2

$$=3\frac{16}{24}-1\frac{21}{24}$$
 Rename the fractions using the LCD, 24.

$$=2\frac{40}{24}-1\frac{21}{24}=1\frac{19}{24}$$
 Regroup $3\frac{16}{24}$ as $2\frac{40}{24}$

So
$$1\frac{7}{8} + \left(-3\frac{2}{3}\right) = -1\frac{19}{24}$$
 The addend with the greater absolute value is negative.

The sum is negative.

The addend with the greater absolute value is negative.

The answer is reasonable.

Key Concept

Adding Signed Numbers

To add signed numbers with like signs:

- · Add their absolute values.
- Use the sign of the addends for the sum.

To add signed numbers with unlike signs:

· Subtract the lesser absolute value from the greater absolute value.

greater - lesser

-2.9 is close to the estimate of -3.

The answer is reasonable.

• Use the sign of the addend with the greater absolute value for the sum.

Subtract signed numbers the same way you subtract integers. Use the Subtraction Principle.

Key Concept.

Subtraction Principle

To subtract any signed number, add its opposite.

Subtract with Like Signs

Subtract:
$$-20.2 - (-7.33)$$

First estimate by rounding:
$$-20.2 - (-7.33) \approx 13$$

Then subtract the actual numbers.

Think
$$-20 - (-7) = -13$$

Align the decimal points.

$$\begin{array}{c|cccc}
 & |-20.2| & \longrightarrow & 20.20 \\
\hline
 & - & |7.33| & & - & 7.33 \\
\hline
 & & & & & & 12.87
\end{array}$$

$$-20.2 - (-7.33) = -12.87$$
 The addend with the greater absolute value is negative. The sum is negative.

So
$$-20.2 - (-7.33) = -12.87$$
.

Think.

-12.87 is close to the estimate of -13.

Subtract with Unlike Signs

Find the difference:
$$2\frac{5}{6} - \left(-4\frac{1}{3}\right)$$

First estimate by rounding:
$$2\frac{5}{6} - \left(-4\frac{1}{3}\right) \approx 7$$

Think...

 $3 - (-4) = 7$

Then subtract the actual numbers.

$$2\frac{5}{6} - \left(-4\frac{1}{3}\right) = 2\frac{5}{6} + 4\frac{1}{3}$$
 \longrightarrow Add the opposite of the subtrahend.

$$\left|2\frac{5}{6}\right| + \left|-4\frac{1}{3}\right| = 2\frac{5}{6} + 4\frac{2}{6} =$$
 Add the numbers in absolute value. Rename the fractions using the LCD, 6.

$$=6\frac{5+2}{6}=6\frac{7}{6}$$
 \leftarrow Add the integers. Then add the fractions.
= $6+1\frac{1}{6}=7\frac{1}{6}$ \leftarrow Rename the sum.

$$2\frac{5}{6} + 4\frac{1}{3} = 7\frac{1}{6}$$
 —Both addends are positive. The sum is positive.

So
$$2\frac{5}{6} - \left(-4\frac{1}{3}\right) = 7\frac{1}{6}$$
.

So $2\frac{5}{6} - \left(-4\frac{1}{3}\right) = 7\frac{1}{6}$. Think. $7\frac{1}{6}$ is close to the estimate of 7. The answer is reasonable.

Try These

Add or subtract. Watch for the signs.

2.
$$-4.93 + \frac{1}{4}$$

3.
$$-6.34 - (-10.4)$$
 4. $7.54 - 8.4 - 4$

5.
$$-2\frac{1}{9} + \left(-7\frac{1}{3}\right)$$

6.
$$\frac{1}{2} - \left(-5\frac{1}{2}\right)$$

5.
$$-2\frac{1}{9} + \left(-7\frac{1}{3}\right)$$
 6. $\frac{1}{2} - \left(-5\frac{1}{2}\right)$ **7.** $-2\frac{3}{5} - \left(-1\frac{1}{10}\right) - \frac{2}{5}$ **8.** $-6.2 - (-1.1) + 6.41$

8.
$$-6.2 - (-1.1) + 6.41$$

9. Discuss and Write How would you model $2\frac{3}{4} + 1\frac{1}{2} - \left(-2\frac{1}{4}\right)$ on a number line?

