Solve Inequalities Using Multiplication or Division

Objective To solve one-step inequalities using the Multiplication or the Division Properties of Inequality • To graph the solution sets of multiplication and division inequalities

To find the number of buses the school will need, write and solve a multiplication inequality.

Let b = the number of buses.

number of passengers for one bus
$$times$$
 number of buses $is \ at \ least$ total number of teachers & students
$$52 \qquad \bullet \qquad b \qquad \geq \qquad 235 \iff \text{multiplication inequality}$$

► To solve a multiplication inequality, use the Division Property of Inequality.

Solve:
$$52b \ge 235$$

$$\frac{52b}{52} \ge \frac{235}{52}$$
 —Use the Division Property of Inequality.

$$b \ge 4.52$$
 Since the answer represents buses, it will need to be the next greater whole number.

$$b \ge 5$$

The answer to the problem is 5. However, the solution set to the inequality contains *all the integers* greater than or equal to 5.

The school will need at least 5 buses.

Key Concept

Division Property of Inequality

If a, b, and c are real numbers, \underline{c} is positive, and a < b, then $a \div \underline{c} < b \div \underline{c}$.

If a, b, and c are real numbers, c is negative, and a < b, then $a \div c > b \div c$.

Similar statements can be written for a > b, $a \le b$, and $a \ge b$.

➤ When you divide both sides of an inequality by a *negative* number, you must *reverse* the inequality symbol to get a true statement.

Solve:
$$-7.30n > 365$$

$$\frac{-7.30n}{-7.30} < \frac{365}{-7.30}$$
 — Divide by a negative number; reverse the inequality symbol. $n < -50$ — Simplify. $\{n \mid n < -50\}$ or $(-\infty, -50)$ — solution set

Graph:

Think
The solution set contains all real numbers less than -50.

Check: According to the graph, -60 is in the solution set, and -30 is *not*.

Try
$$n = -60$$
.

 $-7.30n > 365$

Remember: Check using the original inequality.

 $-7.30(-60) \stackrel{?}{>} 365$

Substitute -60 for n .

 $438 > 365$ True

Try
$$n = -30$$
.
 $-7.30(-30) \stackrel{?}{>} 365$ Substitute -30 for n .
 $219 > 365$ False

Key Concept.

If a, b, and c are real numbers, c is positive,

If a, b, and c are real numbers, c is negative,

Multiplication Property of Inequality

Similar statements can be written for

and a < b, then ac < bc.

and a < b, then ac > bc.

a > b, $a \le b$, and $a \ge b$.

Solve the inequality. Then graph and check the solution set.

$$\frac{x}{12} \bullet 12 \ge 15 \bullet 12$$
 —Use the Multiplication Property of Inequality. $x \ge 180$

Graph:
$$\{x | x \ge 180\}$$
 or $[180, \infty)$

Check: According to the graph, 204 is in the solution set, and 132 is *not*.

Try
$$x = 204$$
. Try $x = 132$.

$$\frac{x}{12} \ge 15$$

$$\frac{x}{12} \ge 15$$

$$\frac{204}{12} \stackrel{?}{\geq} 15$$
 Substitute 204 for x . $\frac{132}{12} \stackrel{?}{\geq} 15$ Substitute 132 for x .

$$17 \ge 15$$
 True $11 \ge 15$ False

When you multiply both sides of an inequality by a *negative* number, you must reverse the inequality symbol to get a true statement.

Solve the inequality. Then graph and check the solution set.

Solve:
$$-y - \frac{1}{5}y < 30$$

$$-\frac{6}{5}y < 30$$
 Simplify; combine like terms.

$$\left(-\frac{5}{6}\right)\left(-\frac{6}{5}y\right) > 30\left(-\frac{5}{6}\right)$$
 — Multiply by a negative number; reverse the inequality symbol.

$$y > -25$$

Graph:
$$\{y | y > -25\}$$
 or $(-25, \infty)$

Check: According to the graph, 0 is in the solution set, and -40 is *not*.

$$-y - \frac{1}{5}y < 30$$

$$-y - \frac{1}{5}y < 30 \qquad \qquad -y - \frac{1}{5}y < 30$$

$$\frac{0}{5} - \frac{1}{5}(0) \stackrel{?}{<} 30$$

$$0 - \frac{1}{5}(0) \stackrel{?}{<} 30 \qquad -(-40) - \frac{1}{5}(-40) \stackrel{?}{<} 30$$

$$0 < 30$$
 True

$$48 < 30$$
 False

Try These

Solve each inequality. Then graph and check the solution set.

- **1.** 4*k* < 24

- **2.** $-1 \ge \frac{-x}{11}$ **3.** -12x + 4x < -4 **4.** -20 < -8z 2z **5.** $\frac{3}{5} < \frac{r}{-5}$
- 6. Monica's new car averages 23 miles per gallon of gasoline. What is the greatest number of gallons of gasoline she will need if she travels no more than 500 miles?
- 7. Discuss and Write Explain, using a number line or model, why it is necessary to reverse the inequality symbol when multiplying and dividing by a negative number.