Solve Absolute-Value Inequalities

Objective To solve inequalities involving absolute-value expressions

► Inequalities that contain an absolute-value expression can be written as a compound inequality.

When a > 0:

$$x = a \text{ OR } x = -a$$

$$|x| < a \rightarrow$$
 means that x is less than a units from 0.

$$x > -a$$
 AND $x < a$

The above is also true for \leq .

 $|x| > a \longrightarrow$ means that x is greater than a units from 0.

$$x < -a \text{ OR } x > a$$

The above is also true for \geq .

Remember: The absolute value of any real number, x, is the distance from zero to x on a number line.

To solve an absolute-value inequality involving the "is less than" symbol, rewrite the inequality as a conjunction, and solve.

STATES

Solve: |x| + 4 < 14 Isolate the absolute-value expression.

Rewrite this statement as a *conjunction*.

$$x > -10$$
 AND $x < 10$ $\leftarrow x$ is between -10 and 10 .

Graph:
$$\{x \mid -10 < x < 10\}$$
; also written as $(-10, 10)$

Key Concept

Principles for Solving an Absolute-Value Inequality

- **1.** Isolate the absolute-value expression.
- 2. Write the statement as a compound inequality.
- 3. Solve the two simple inequalities.
- 4. Graph the solution set and check.

Check: Try
$$x = -5 \rightarrow |-5| + 4 \stackrel{?}{<} 14$$

 $5 + 4 \stackrel{?}{<} 14$
 $9 < 14$ True

Example

Solve: $|r + 7| - 2.5 \le 11$

$$|r+7| - 2.5 \le 11$$

 $|r+7| - 2.5 + 2.5 \le 11 + 2.5$
 $|r+7| \le 13.5$

$$r + 7 \ge -13.5 \text{ AND } r + 7 \le 13.5$$

$$\frac{-7}{r \ge -20.05} \frac{-7}{\text{AND}} \frac{-7}{r \le 6.5}$$

Graph: $\{r \mid -20.5 \le r \le 6.5\}$; also written as [-20.5, 6.5]

Check: Try
$$r = 0$$
. $\longrightarrow |0 + 7| - 2.5 \stackrel{?}{\leq} 11$
 $|7| - 2.5 \stackrel{?}{\leq} 11$
 $4.5 \stackrel{\checkmark}{\leq} 11$ True

Solve: |x| - 3 > 5 Isolate the absolute-value expression.

Rewrite this statement as a disjunction.

$$x < -8 \text{ OR } x > 8 \leftarrow x$$
 is either less than $-8 \text{ OR greater than } 8$.

Graph: $\{x \mid x < -8 \text{ or } x > 8\}$; also written as $(-\infty, -8) \cup (8, \infty)$

Check: Try
$$x = -10 \longrightarrow |-10| - 3 \stackrel{?}{>} 5$$

 $10 - 3 \stackrel{?}{>} 5$
 $7 > 5$ True

Example

Solve: $2|c-1|+14 \ge 26$ Isolate the absolute-value expression.

 $\frac{2|c-1|}{2} \ge \frac{12}{2}$ —Use the Division Property of Inequality.

 $|c-1| \ge 6$ Rewrite this statement as a *disjunction*.

$$c - 1 \le -6 \, \mathbf{OR} \, c - 1 \ge 6$$

+ 1 + 1 + 1 ← Use the Addition Property of Inequality.

 $c \le -5$ OR $c \ge 7$ $\leftarrow c$ is either less than or equal to -5 OR greater than or equal to 7.

Graph: $\{c \mid c \le -5 \text{ OR } c \ge 7\}$; also written as $(-\infty, -5] \text{ OR } [7, \infty)$

Check: Try r = -8.

$$2|-8-1|+14 \stackrel{?}{\ge} 26$$

 $2|-9|+14 \stackrel{?}{\ge} 26$

$$2(9) + 14 \stackrel{?}{\geq} 26$$

$$32 \ge 26$$
 True

Try These

Solve each inequality. Then graph and check the solution set.

1.
$$|m| - 16 < 4$$

2.
$$16|d| \ge 4$$

3.
$$|x + 11| - 4 \le 9$$
 4. $\frac{4}{5}|d| > 3$

4.
$$\frac{4}{5}|d| > 3$$

$$5. |y+6| - 2\frac{1}{4} \ge 1\frac{3}{4}$$

6.
$$|2x| - 1 < 11$$

7.
$$-2 + |3b - 5| > 8$$

5.
$$|y+6|-2\frac{1}{4} \ge 1\frac{3}{4}$$
 6. $|2x|-1 < 11$ **7.** $-2+|3b-5| > 8$ **8.** $2.4+|g-1| \ge 1.5$

9. Discuss and Write Explain the similarities and differences between solving an inequality that contains an absolute-value expression and one that does not. Use specific examples to support your reasoning.