4-1 Introduction to Relations

Date _____

Write the domain and range of relation M.

There are infinitely many ordered pairs in this relation.

Domain: $\{x | -1 \le x \le 3\}$ Range: $\{y | -2 \le y \le 2\}$

You can also represent a relation using a rule. Relation M can be represented by y = x - 1.

Find g, if $\left(g, \frac{2}{3}\right)$ belongs to M.

$$y = x - 1$$

$$\frac{2}{3} = g - 1$$
 Substitute g for x and $\frac{2}{3}$ for y .

$$\frac{2}{3} + 1 = g - 1 + 1$$
 —Add 1 to both sides. $1\frac{2}{3} = g$

For relation M, an input value of $1\frac{2}{3}$ results in an output value of $\frac{2}{3}$.

Write the domain and range of each relation.

1

•	x	y
	-3	-1
	-2	2
	0	5
	1	9
	4	10

•	x	y
	-2	-1
	0	0
	2	1
	4	3
	6	5

3.

•	x	y
	-1.5	-6
	0.5	-4
	2.5	-2
	3.5	13
	4.5	22

•	x	y
	-3.2	-1
	-2.6	0
	-2.4	3
	3.4	11
	5.2	34

Domain: $\{-3, -2, 0, 1, 4\}$ Range: {-1, 2, 5, 9, 10}

5.

8. the graph of a line segment with endpoints (-2,3) and (3,-2)

9. the graph of a line segment with endpoints (-4, 1) and (3, 4)

10. the graph of a line that includes points (-2, -2)and (3, 3)

Write the domain and range of each relation.

11.

13.

Relation R is represented by the rule $y = -2x^2$. Solve.

14. Does the ordered pair (-2, 3) belong to R?

$$y = -2x^2$$

 $3 \stackrel{?}{=} -2(-2)^2$
 $3 \stackrel{?}{=} -2(4) = -8$ False, $3 \neq -8$
No. $(-2, 3)$ is not in R .

- **15.** Does the ordered pair (1, -2) belong to R?
- **16.** Does the ordered pair (-2, -2) belong to R?
- **17.** Does the ordered pair (-1, -2) belong to R?

18. If (3, *b*) belongs to *R*, find *b*.

19. If (a, -50) belongs to R, find a.

20. If (3c, f) belongs to R, find f.

21. If $(5\ell, -k)$ belongs to R, find k.

22. If (2z, -i) belongs to R, find z.

23. If $(\frac{1}{2}d, -e)$ belongs to R, find d.

CHALLENGE

24. What are the domain and range of this relation?

