Write Function Rules

Objective To write function rules • To make function tables

Michael is going on a 2-week vacation. Since he cannot bring his dog on the trip, he decides to hire a dog sitter. A local pet shop charges \$3 per hour for home dog-sitting services plus a basic 2-week fee of \$50. How can Michael determine the total cost of the dog-sitting services?

To determine the total cost of the dog-sitting services, write a function rule or an equation.

 Write a relationship for the total cost. Notice that there are two components: the basic fee and the hourly charges. Since the basic fee is constant, the total cost then depends on the number of hours spent carrying out the selected services.

Let c = the total cost. \leftarrow the dependent variable

Let h = the number of hours of service. \leftarrow the independent variable

Since h is the independent variable, c is a function of h.

$$c(h) = 50 + 3h$$
 function rule Remember: Read $c(h)$ as " c of h ."

So Michael can input different values of h into the function rule to determine the total costs of the dog-sitting services.

Suppose Michael needs dog-sitting services for 28 hours over a 2-week period. What is the total cost of the services?

$$c(h) = 50 + 3h \rightarrow c(28) = 50 + 3 \cdot 28$$

= 50 + 84
= 134

So the 2-week cost for 28 hours of dog-sitting services is \$134.

To show solutions of a function, such as c(h) = 50 + 3h, you can make a function table. Choose several values for the input, h. Then substitute each value into the function to find the corresponding output, c.

h	c(h) = 50 + 3h	Relation (hours, cost)
10	$c(10) = 50 + 3 \cdot 10 = 80$	(10, 80)
20	$c(20) = 50 + 3 \cdot 20 = 110$	(20, 110)
30	$c(30) = 50 + 3 \cdot 30 = 140$	(30, 140)

function table

.Think.....

The ordered pair (10, 80) stands for "\$80 for 10 hours of service."

Write a rule that expresses a relationship between the given *x*- and *y*-values.

.Think

Since the *y*-values are greater than the *x*-values, test patterns using addition or multiplication.

x	y
-2	2
-1	3
0	4
1	5

$$-2 + 4 = 2$$
 True
 $-1 + 4 = 3$ True
 $0 + 4 = 4$ True
 $1 + 4 = 5$ True

Test Addition

Test Multiplication
$$-2(-1) = 2$$
 True $-1(-1) = 3$ False

$$-1(-1) = 3$$
 False
There is no need to
continue the test.

So a rule that relates the given x- and y-values is y = x + 4, or f(x) = x + 4.

You can find other ordered pairs that satisfy the function rule f(x) = x + 4 by using different input values for x.

Examples

What equation or function rule can be written to represent the relationship between x and f(x)?

1	Input (x)	Output $f(x)$	
	-1	1.5	-1 + 2.5 = 1.5
	0	2.5	← 0 + 2.5 = 2.5
	1	3.5	← 1 + 2.5 = 3.5
	2	4.5	-2 + 2.5 = 4.5
	3	5.5	-3 + 2.5 = 5.5
	4	6.5	← 4 + 2.5 = 6.5

Each f(x) value is 2.5 greater than each x value. The function rule is f(x) = x + 2.5.

Input (x)	Output $f(x)$	
0	5	-5(0) + 5 = 5
1	10	-5(1) + 5 = 10
2	15	-5(2) + 5 = 15
3	20	-5(3) + 5 = 20

Each f(x) value is five more than five times the x value. The function rule is f(x) = 5x + 5.

Try These

Write a function rule for the situation. Use function notation.

- **1.** The total distance, *d*, traveled after *h* hours at a constant rate of 55 miles per hour
- **2.** The perimeter, *p*, of an equilateral triangle when you know the length, *s*, of a side
- **3.** Janet has joined a gym. By contract, she pays a one-time membership fee of \$100 and \$60 per month for as long as she remains a member.

Make a function table using integers from -2 to 2 as input values for each function.

4.
$$f(x) = 2x - 7$$

5.
$$c(m) = 20 + 3.5m$$

6.
$$d(t) = 6t + 55$$

7. Discuss and Write Mr. Higgins asked his class to write a function rule for the values shown in the table at the right. Harriet's answer is y = |x| + 5. Pat's answer is y = |x + 5|. Who is correct? Justify your answer.

\boldsymbol{x}	5	0	-6	-10
y	10	5	1	5