4-5 Geometric Sequences

Name

Date _

Determine if each sequence is geometric. If it is, find the next term and the 10th term of the sequence.

$$6 \div 6 = 1$$

$$12 \div 6 = 2 \leftarrow 2 \neq 1$$
; no common ratio.

The sequence is *not* geometric.

Remember: In a geometric sequence, each term after the first is found by multiplying the previous term by a constant (called the common ratio, r, with $r \neq 0$ or 1).

If a_1 is the first term, the nth term of a geometric sequence is: $a_n = a_1 \cdot r^{n-1}$

$$\frac{a_2}{a_1} = \frac{20}{40} = \frac{1}{2}; \frac{a_3}{a_2} = \frac{10}{20} = \frac{1}{2}; \frac{a_4}{a_3} = \frac{5}{10} = \frac{1}{2}$$

So the sequence appears to be geometric.

Next term:
$$5 \cdot \frac{1}{2} = \frac{5}{2}$$
.

*n*th term:
$$a_n = a_1 r^{(n-1)}$$

$$a_{10} = 40\left(\frac{1}{512}\right) = \frac{5}{64}$$

Determine whether each sequence could be geometric, arithmetic, or neither. If geometric, use a pattern to write the next four terms.

$$\frac{38}{380} = \frac{1}{10}, \frac{3.8}{38} = \frac{1}{10}, \frac{0.38}{3.8} = \frac{1}{10}$$

1.
$$380, 38, 3.8, 0.38, \dots$$

$$\frac{38}{380} = \frac{1}{10}, \frac{3.8}{38} = \frac{1}{10}, \frac{0.38}{3.8} = \frac{1}{10}$$

$$0.38 \cdot \frac{1}{10} = 0.038, 0.038 \cdot \frac{1}{10} = 0.0038$$

$$0.0038 \cdot \frac{1}{10} = 0.00038, 0.00038 \cdot \frac{1}{10} = 0.000038$$

geometric; 0.038, 0.0038, 0.00038, 0.000038

3. 5, 6, 8, 11, ...

4.
$$\frac{1}{2}$$
, $\frac{1}{6}$, $-\frac{1}{6}$, $-\frac{1}{2}$, ...

Find the indicated term of each geometric sequence.

5.
$$a_7$$
 of $\frac{1}{16}$, $\frac{1}{4}$, 1, 4,

5.
$$a_7 \text{ of } \frac{1}{16}, \frac{1}{4}, 1, 4, \dots$$

$$\frac{\frac{1}{4}}{\frac{1}{16}} = 4; a_n = a_1 \cdot r^{n-1}$$

$$a_7 = \frac{1}{16}(4)^{7-1} = \frac{1}{16}(4)^6 = \frac{4096}{16}$$

9.
$$a_{10}$$
 of 1, -2, 4, -8, ...

6. a_8 of $\frac{1}{81}$, $\frac{1}{27}$, $\frac{1}{9}$, $\frac{1}{3}$, ...

10.
$$a_{10}$$
 of -2 , 8 , -32 , 128 , ...

7. a_9 of 800, 400, 200, 100, ...

Find the indicated term of each geometric sequence.

13.
$$a_6$$
 of 82, -123 , 184.5, -276.75 , ...

16.
$$a_{20}$$
 of $b, b^5, b^9, b^{13}, \dots$

Write a recursive formula for the *n*th term of each geometric sequence.

 $a_n = ra_{n-1}$

18.
$$2, \frac{10}{3}, \frac{50}{9}, \frac{250}{27}, \dots$$

19.
$$z^{12}$$
, z^8 , z^4 , 1, ...

$$r = -12.8 \div 16 = -0.8$$
$$a_n = -0.8 \bullet a_{n-1}$$

Solve.

- **20.** The population of a town decreases by one third each year for 3 years. If it starts with a population of 540,000, what will be the population after 3 years?
- **21. Biology** The number of cells in a sample doubles every half-hour. If a lab sample started with 2 cells, how many cells are in the sample 10 hours later?

Problem Solving

- 22. A ball is dropped from a height of 36 ft. After 2 bounces it reaches a height of 4 ft. What height will the ball reach after another bounce?
- 23. Sono marks the middle of a board. He makes another mark half-way between the first mark and the end of the board. He makes more marks using the same pattern 6 more times. If the distance between the end of the board and the nearest mark is $\frac{1}{2}$ in., how many feet long is the board?

SPIRAL REVIEW

24. Solve.
$$3x + 19 = 10$$

25. Solve.
$$|x + 8| = -12$$

26. Solve.
$$11b + 13 \ge -4b + 28$$