
The table below and the graph at the right show how long it took Pablo to read each of the first three chapters of his history book. Is there a mathematical relationship between the number of pages in a chapter and the time it took Pablo to read them?

Chapter	Pages (x)	Time in Minutes (y)
One	8	20
Two	16	40
Three	12	30

As the number of pages in a chapter increases, the amount of time it takes Pablo to read the chapter changes by a constant factor. The time, *y*, varies *directly* with the number of pages in the chapter, *x*. This relationship is called a direct variation.

constant of variation:
$$k = \frac{y}{x} = \frac{20}{8} = \frac{40}{16} = \frac{30}{12} = \frac{5}{2}$$

Substituting
$$\frac{5}{2}$$
 for k in the equation $y = kx$ gives $y = \frac{5}{2}x$.

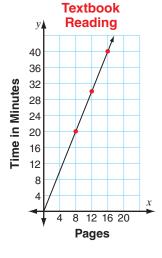
So the relationship between the number of pages, x, and the time it took Pablo to read them, y, is $y = \frac{5}{2}x$.

► For every direct variation:

- The graph is a straight line that passes through the origin.
- The constant of variation is the slope of the line.

Not *all* linear equations represent direct variations. If a linear equation cannot be written in the form of y = kx, then the function is not a direct variation.

Examples


Tell whether each relation represents a direct variation. If so, give the constant of variation.

Method 1 Find the constant of variation, $\frac{y}{x}$, for each ordered pair.

$$k = \frac{y}{x} = \frac{6}{-3} = \frac{4}{-2} = \frac{-2}{1} = -2$$

Yes, the ordered pairs represent a direct variation because $\frac{y}{x} = -2$ for each ordered pair. y varies directly with x.

Key Concept

Direct Variation

A direct variation is a linear function in which for each ordered pair, (x, y),

$$y = kx$$
 or $k = \frac{y}{x}$, $k \neq 0$.

Method 2 Write an equation.

Yes, the ordered pairs represent a direct variation because they can be written in the form y = kx, where k = -2.

$$3y = 2x + 6$$
 Solve the equation for y.

$$\frac{3y}{3} = \frac{2x+6}{3}$$
 Use the Division Property of Equality.
$$y = \frac{2}{3}x + 2$$

The equation is not a direct variation because it cannot be written in the form y = kx.

$$y - x = 0$$
 Solve the equation for y.

$$y - x + x = 0 + x$$
 Use the Addition Property of Equality.

The equation is a direct variation because it can be written in the form y = kx. The constant of variation is 1.

You can write and solve direct variation equations.

The value of y varies directly with x, and y = 9 when x = 6. Find x when y = 6.

First find *k*. Then write an equation and solve for *x*.

$$6 = \frac{3}{2}x$$
 Substitute 6 for y.

$$\frac{2}{3}(\cancel{6}) = \frac{\cancel{2}}{\cancel{3}}(\frac{\cancel{3}}{\cancel{2}}x)$$
 Use the Multiplication Property of Equality.
$$4 = x$$

Try These

Explain whether each relation represents a direct variation. If so, state the constant of variation.

1.	x
	1

1	X	y
	1	-2
	-2	-4
	4	8

x	y
4	6
6	9
10	15

3.
$$2y + x = 0$$
 4. $y - 2 = -3x$

Solve.

5. The value of y varies directly with x, and y = 7.2 when x = 1.6. Find y when x = 2.4.

6. The amount of dog food Bowser eats varies directly with the number of days he is fed. If he eats 0.75 pounds in 2 days, how long will it take him to finish a 30-pound bag? (*Hint*: Let x = number of days and y = amount of food.)

7. Discuss and Write Every direct variation is a linear function, but not every linear function is a direct variation. Explain.