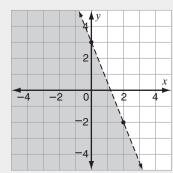
5-7 Graph a Linear Inequality in the Coordinate Plane


Graphing Linear Inequalities				
Inequality	$y \le mx + b$	y < mx + b	$y \ge mx + b$	y > mx + b
Boundary Line	solid	dashed	solid	dashed
Shading	below	below	above	above

Graph the solution to the linear inequality.

$$y < -\frac{5}{2}x + 3$$
 —Use the Division Property of Inequality.

Remember: Reverse the inequality symbol when dividing by a negative number.

Graph $y = -\frac{5}{2}x + 3$. —Use a dashed line for <.

Shade the half-plane *below* the line. ← Shade

Check: Does (0, 0) satisfy $y < -\frac{5}{2}x + 3$?

$$0 \stackrel{?}{<} -\frac{5}{2}(0) + 3$$

Tell whether the ordered pair is a solution to the inequality.

1.
$$y < 2x + 5$$
; $(-2, 3)$
3 < 2(-2) + 5
3 < -4 + 5
3 < 1 false

2.
$$y < -2x + 5$$
; (1, 5)

3.
$$3x + 4y \ge -3$$
; $(-2, 1)$

4.
$$2x + 5y \ge -4$$
; $(-3, 3)$

5.
$$5y > -2$$
; $\left(-4\frac{3}{4}, 7\frac{7}{8}\right)$

4.
$$2x + 5y \ge -4$$
; $(-3, 3)$ **5.** $5y > -2$; $\left(-4\frac{3}{4}, 7\frac{7}{8}\right)$ **6.** $2y > -8$; $\left(-2\frac{7}{8}, -1\frac{3}{4}\right)$

7.
$$3x - 2y < -12$$
; $(-2.5, 1.4)$ **8.** $4x - y < -17$; $(-3.6, 2.5)$ **9.** $3x - 4y \ge 1$; $(\frac{3}{2}, \frac{1}{2})$

8.
$$4x - y < -17$$
: $(-3.6, 2.5)$

9.
$$3x - 4y \ge 1; \left(\frac{3}{2}, \frac{1}{2}\right)$$

Graph each linear inequality on a separate sheet of paper. Then describe the solution set. (Hint: When the boundary line is vertical, shade to the left for \leq and \leq ; shade to the right for \geq and \geq .)

10.
$$x + y < 1$$

 $x - x + y < -x + 1$
 $y < -x + 1$

11.
$$x + y < 2$$

12.
$$3x > 7$$

The graph has a dashed boundary line, y = -x + 1, and is shaded below.

13.
$$-2y \ge 11$$

14.
$$2x - y < 3$$

15.
$$-9x + 3y < 0$$

16.
$$8x + 2y > 4.8$$

17.
$$6x + 3y > 12.3$$

18.
$$\frac{4}{5}x + 4y \ge 9$$

Solve. Show your work.

19. A manufacturer takes 3 hours to make a chair and 2 hours to make a stool. If it spends a maximum of 800 hours making chairs and stools and makes 70 stools, what is the maximum number of chairs it can make?

20. Which inequalities have (2.4,
$$-0.5$$
) as a solution? $y > -6x + 9$ $3x \le 15$ $2x - y \ge 8$ $3.9x + 1.1y < 8.81$

CRITICAL THINKING

21. Explain why no solution to the inequality $y \ge 2x + 2$ can be an ordered pair of the form (+, -).