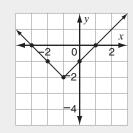
5-8 Absolute-Value Functions

Name


Date _____

Graph the function. Identify the vertex, axis of symmetry, x- and y-intercepts, domain, and range. Tell whether the graph opens up or down.

$$y = |x+1| - 2$$

Choose positive, negative, and zero values for x.

x	y = x+1 - 2
-3	0
-2	-1
-1	-2
0	-1
1	0

The vertex is (-1, -2). The axis of symmetry is x = -1. The *x*-intercepts are -3, 1. The y-intercept is -1. The domain is all real numbers. The range is $y \ge -2$. The graph opens up.

Identify the vertex of each of the following absolute-value functions.

(*Hint*: The vertex occurs where the absolute-value expression equals zero.)

1.
$$y = |x + 7|$$

2.
$$y = |x + 9|$$

3.
$$y = |x - 4|$$

4.
$$y = |x - 10|$$

$$|x + 7| = 0$$

 $x = -7$; $y = 0$
 $(-7, 0)$

5.
$$y = |x| + 6$$

6.
$$y = |x| + 11$$

7.
$$y = |x| - 22$$

8.
$$y = |x| - 15$$

9.
$$y = |x + 3| - 6$$

10.
$$y = |x + 8| - 16$$

11.
$$v = |x - 4| - 12$$

9.
$$y = |x + 3| - 6$$
 10. $y = |x + 8| - 16$ **11.** $y = |x - 4| - 12$ **12.** $y = |x - 25| - 31$

13.
$$y = |x + 11| + 19$$

14.
$$y = |x + 13| + 14$$
 15. $y = |x - 39| + 42$ **16.** $y = |x - 26| + 51$

15.
$$y = |x - 39| + 42$$

16.
$$y = |x - 26| + 52$$

17.
$$y = -|x - 6| + 2$$

17.
$$y = -|x - 6| + 2$$
 18. $y = -|x - 7| + 8$ **19.** $y = -|x + 6.5|$ **20.** $y = -|x + 7.3|$

19.
$$y = -|x + 6.5|$$

20.
$$y = -|x + 7.3|$$

21.
$$y = \left| x + \frac{2}{3} \right| - \frac{5}{4}$$

22.
$$y = \left| x + \frac{5}{8} \right| - \frac{7}{12}$$

21.
$$y = \left| x + \frac{2}{3} \right| - \frac{5}{4}$$
 22. $y = \left| x + \frac{5}{8} \right| - \frac{7}{12}$ **23.** $y = -\left| x - \frac{1}{9} \right| - 1.2$ **24.** $y = -\left| x - \frac{1}{8} \right| - 2.7$

24.
$$y = -\left|x - \frac{1}{8}\right| - 2.7$$

Graph each absolute-value function on a separate sheet of paper. Identify the vertex, axis of symmetry, x- and y-intercepts, domain, and range. Tell whether the graph opens up or down.

25.
$$y = |x + 6|$$

26.
$$y = |x + 8|$$

27.
$$y = |x| + 9$$

vertex: (-6, 0) axis of symmetry: x = -6x-intercept: -6; y-intercept: 6domain: all real numbers range: $y \ge 0$; opens up

28.
$$y = |x| + 12$$

29.
$$y = -|x| + 7$$

30.
$$y = -|x| + 5$$

31.
$$y = -|x + 2|$$

32.
$$y = -|x + 4|$$

33.
$$y = |x - 1.8| + 2.9$$

34.
$$y = |x - 2.5| + 1.8$$

35.
$$y = -\left|x + \frac{2}{3}\right| - \frac{1}{6}$$

36.
$$y = -\left|x + \frac{1}{4}\right| - \frac{1}{2}$$

Graph and compare each function.

- **37.** How is the graph of y = |x + 12| related to the graph of y = |x|?
- **38.** How is the graph of y = |x| 8 related to the graph of y = |x|?

TEST PREPARATION

39. Which equation has a vertex of (-8, 11)?

A.
$$y = -|x + 8| - 11$$
 C. $y = |x - 8| + 11$

C.
$$y = |x - 8| + 11$$

B.
$$y = |x + 8| - 11$$

B.
$$y = |x + 8| - 11$$
 D. $y = -|x + 8| + 11$

40. Which vertex belongs to the equation

$$y = -|2x + 3| + 4?$$

F.
$$\left(-\frac{2}{3}, 4\right)$$

F.
$$\left(-\frac{2}{3}, 4\right)$$
 H. $\left(-\frac{3}{2}, 4\right)$

G.
$$\left(-4, \frac{3}{2}\right)$$
 J. $\left(-4, \frac{2}{3}\right)$

J.
$$\left(-4, \frac{2}{3}\right)$$