

Objective To graph and find values for piecewise-defined functions that are defined over two adjacent domains

Cory goes hiking and fishing. He hikes for 2 hours at a rate of 3.5 miles per hour to go from his tent to the river. Then he stops and fishes for 2 hours. What is the distance, *D*, between Cory hikes and his tent for times *t* equal to 1.5 hours and 3.5 hours?

➤ Since Cory's trip is in two parts, hiking and fishing, both the function and graph also have two pieces. This type of function is called a **piecewise function.** For the first two hours of the trip, his distance can be found by multiplying the rate, 3.5 mi/h, by the time, t. Once he stops and fishes at the river, his distance from the tent stays the same at 7 miles.

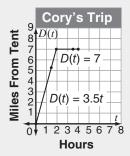
You can represent a piecewise function in two different ways.

Key Concept

A **piecewise function** is a function that is defined by different expressions on different intervals.

Method 1: Algebraically

• Write the function as two pieces using a bracket. Each piece shows how to write the function for a particular range of *t* values.

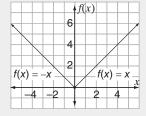

$$D(t) = \begin{cases} 3.5t & 0 \le t \le 2\\ 7 & 2 < t \le 4 \end{cases}$$

• Evaluate the function for each value of t. $D(1.5) = 3.5(1.5) = 5.25 \leftarrow Use D(t) = 3.5t$.

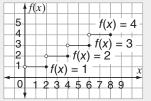
$$D(3.5) = 7 - Use D(t) = 7.$$

Method 2: Graphically

- Draw the graph using each description. From $0 \le t \le 2$, draw a line with slope 3.5. From $2 < t \le 4$, draw a line with no slope.
- Use the graph to find the d(t) values for t = 1.5 hours and t = 3.5 hours D(1.5) = 5.25D(3.5) = 7



So, Cory is 5.25 miles from the tent after 1.5 hours and 7 miles from the tent after 3.5 hours.


- ▶ Absolute-value and step functions are also piecewise functions. Sometimes piecewise functions have segments that do not connect. Use an open circle for an endpoint not included in the domain, and a closed circle for an endpoint that is in the domain.
- An absolute-value function is a piecewise function.

If
$$f(x) = |x|$$
, then

$$f(x) = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

A step function is a function that has a series of horizontal segments that increase or decrease regularly.

$$f(x) = \begin{cases} 1 & \text{if } 0 < x \le 2\\ 2 & \text{if } 2 < x \le 4\\ 3 & \text{if } 4 < x \le 6\\ 4 & \text{if } 6 < x \le 8 \end{cases}$$

1. Discuss and Write Why is an absolute-value function a type of piecewise function?

Draw the graph of each function.

2.
$$f(x) = \begin{cases} 2x - 3 & \text{if } x \ge 2 \\ -2x + 3 & \text{if } x < 0 \end{cases}$$

4.
$$f(x) = \begin{cases} 2x - 2 & \text{if } x \ge 2\\ -0.5x + 2 & \text{if } x < 2 \end{cases}$$

6.
$$f(x) = \begin{cases} -1.5x + 4 & \text{if } x > 1\\ 2 & \text{if } -1 \le x \le 1\\ 1.5x + 1 & \text{if } x < -1 \end{cases}$$

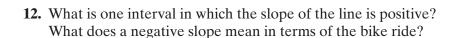
3.
$$g(x) = \begin{cases} 4 & \text{if } x \ge 1 \\ -x & \text{if } x < 1 \end{cases}$$

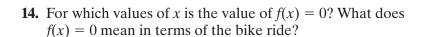
5.
$$g(x) = \begin{cases} x - 4 & \text{if } x \ge 2 \\ -x & \text{if } x < 2 \end{cases}$$

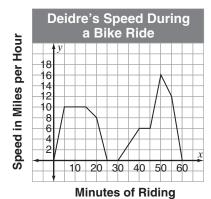
7.
$$g(x) = \begin{cases} 4 & \text{if } x > 2 \\ -x - 1 & \text{if } -4 \le x \le 2 \\ -2 & \text{if } x < -4 \end{cases}$$

Problem Solving

Use the graph titled Shipping and Handling Charges for problems 8–10.

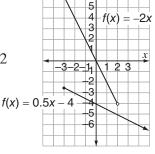

- **8.** What is the shipping and handling charge for merchandise weighing 5.9 pounds?
- **9.** What pattern or rule is used to determine the shipping and handling charges?
- **10.** If the pattern continues, what would the shipping and handling charges be for a 13-pound box?


Weight of Merchandise in Pounds


Use the graph titled Deidre's Speed During a Bike Ride for problems 11–14.

11. What is the value of f(20)? What does f(20) mean in terms of Deidre's bike ride?

13. What is one interval in which the slope of the line is negative? What does a positive slope mean in terms of the bike ride?



EXPLAIN YOUR REASONING

15. Damien gave the equation and graph at the right as an example of a piecewise function. Is it a piecewise function? Explain.

$$f(x) = \begin{cases} 0.5x - 4 & \text{if } x \ge -2\\ -2x & \text{if } x < 2 \end{cases}$$

