
Absolute-Value Functions

Objective To graph the basic absolute-value function and identify its characteristics
• To investigate the graphs of absolute-value functions using a handheld device

A function rule that contains an absolute-value expression is called an absolute-value function. The graphs of absolute-value functions are not linear, although they are related to linear functions.

To graph the absolute-value function y = |x|, make a function table, and graph the points.

x	-2	-1	0	1	2
y = x	2	1	0	1	2

The graph is V-shaped and is separated into two congruent parts by a line, called the axis of symmetry. The left and right parts are the graphs of y = -x for $y \le 0$ and y = x for $y \ge 0$, respectively. The point in which the two parts meet is called the vertex.

An absolute-value graph shows:

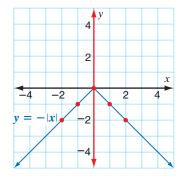
- the vertex
- the axis of symmetry
- the *x* and *y*-intercepts
- the domain
- the range

An absolute-value graph is a *function* because for every *x*-value, there is only one *y*-value.

The absolute-value graph above shows:

- The vertex is (0,0).
- The axis of symmetry is the y-axis (x = 0).
- The x- and y-intercepts are both 0.
- The domain (x-values) is the set of all real numbers.
- The range (y-values) is $y \ge 0$.

The graph of y = |x| is a function because for every *x*-value, there is only one *y*-value.


There are other absolute-value functions whose graphs are V-shaped. The graphs of these functions can *open up* or *down*.

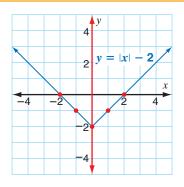
Graph:
$$v = -|x|$$

Identify the vertex, axis of symmetry, *x*- and *y*-intercepts, domain, and range. Tell whether the graph opens up or down.

Make a function table. Choose positive, negative, and zero values for *x*. Then graph.

X	y = - x
-2	-2
-1	-1
0	0
1	-1
2	-2

The absolute-value graph at the left shows the following:

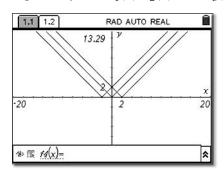

- The vertex is (0,0).
- The axis of symmetry is x = 0.
- The *x*-intercept is 0.
- The *y*-intercept is 0.
- The domain is all real numbers.
- The range is $y \le 0$.
- The graph opens down.

Notice when y = |x|, the graph of the absolute-value function opens up, and when y = -|x|, the graph of the absolute-value function opens down.

Example

Graph: y = |x| - 2Choose positive, negative, and zero values for x. Then graph.

x	y = x - 2		
-2	0		
-1	-1		
0	-2		
1	-1		
2	0		



The absolute-value graph at the left shows the following:

- The vertex is (0, -2).
- The axis of symmetry is x = 0.
- The x-intercepts are -2, 2.
- The y-intercept is -2.
- The domain is all real numbers.
- The range is $y \ge -2$.
- The graph opens up.
- You can graph various absolute-value functions such as f(x) = |x|, f(x) = |x + c|, and f(x) = |x - c|, on the same coordinate plane using a handheld. This device can make exploring each graph's unique and similar characteristics easier.

Graph y = |x|, y = |x + 2|, and y = |x - 2| on the same coordinate plane using a handheld device.

To enter the equations, press (1), select (2): Graphs and Geometry, and then input each function separately into $f_1(x)$, $f_2(x)$, and $f_3(x)$.

	y = x	y = x + 2	y = x - 2
vertex	(0, 0)	(-2, 0)	(2, 0)
axis of symmetry	x = 0	x = -2	x = 2
x-intercept(s)	0	-2	2
y-intercept	0	2	2
domain	all real numbers		
range	$y \ge 0$	$y \ge 0$	$y \ge 0$

Notice that when c is 0, the axis of symmetry is x = 0; when c is +2, the axis of symmetry is x = -2; and when c is -2, the axis of symmetry is x = 2.

Try These

Identify the vertex by graphing the absolute-value function.

1.
$$y = |x - 1|$$

2.
$$y = |x| - 1$$

3.
$$y = |x + 1|$$
 4. $y = |x| + 1$

4.
$$y = |x| + 1$$

Graph the absolute-value function. Identify the vertex, axis of symmetry, x- and y-intercepts, domain, and range. Tell whether the graph opens up or down.

5.
$$y = -|x + 3|$$

6.
$$y = |x - 2| + 1$$

7.
$$y = -|x| - 2$$

8. Discuss and Write Use a handheld to graph $y = |x|, y = \left|\frac{1}{2}x\right|$, and y = |5x|. What is the same and what is different about the graphs? Describe how changing the coefficient of *x* affects the graph.