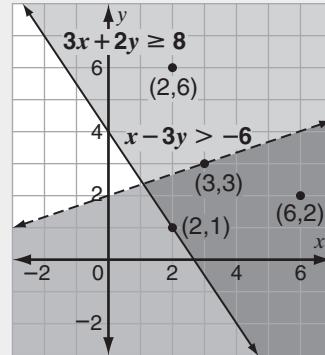


6-6 Graph Systems of Linear Inequalities

Name _____ Date _____

Solve by graphing: $\begin{cases} 3x + 2y \geq 8 \\ x - 3y > -6 \end{cases}$


Then name two ordered pairs that are solutions and two that are not.

1 Graph the first inequality.

$$\begin{aligned} 3x + 2y &\geq 8 \\ y &\geq -\frac{3}{2}x + 4 \quad \leftarrow \text{Solve the inequality for } y. \\ m &= -\frac{3}{2}, b = 4 \end{aligned}$$

This region *includes* the boundary line

$$y = -\frac{3}{2}x + 4 \text{ and all points } \text{above it.}$$

2 Graph the second inequality.

$$\begin{aligned} x - 3y &> -6 \\ y &< \frac{1}{3}x + 2 \quad \leftarrow \text{Solve the inequality for } y. \\ m &= \frac{1}{3}, b = 2 \end{aligned}$$

This region lies *below* the boundary line

$$y = \frac{1}{3}x + 2.$$

3 The solution of the system of inequalities consists of coordinates of all ordered pairs in the area where the shaded regions *intersect*.

(2, 1) and (6, 2) are solutions.
(2, 6) and (3, 3) are not solutions.

On a separate sheet of paper, graph the system of inequalities. Tell if the given ordered pair is a solution of the system.

1. $\begin{cases} x + 2y > -3 \\ 3x + 4y < 12 \end{cases}$ (1, 2)

2. $\begin{cases} 4x - y < -6 \\ x + 3y > 8 \end{cases}$ (-2, 5)

3. $\begin{cases} 3x - 2y \geq -1 \\ 2x + y < 6 \end{cases}$ (10.3, -3.8)

$$\begin{array}{l|l} \begin{array}{l} x + 2y > -3 \\ 1 + 2(2) > -3 \\ 1 + 4 > -3 \\ \text{True: } 5 > -3 \\ \text{yes} \end{array} & \begin{array}{l} 3x + 4y < 12 \\ 3(1) + 4(2) < 12 \\ 3 + 8 < 12 \\ \text{True: } 11 < 12 \end{array} \end{array}$$

4. $\begin{cases} 2x - 5y > 3 \\ 3x + 2y \leq 6 \end{cases}$ (-4.9, 5.1)

5. $\begin{cases} 3x - 8y \geq 7 \\ 6x + 16y \leq -6 \end{cases}$ $\left(\frac{2}{3}, -\frac{5}{8}\right)$

6. $\begin{cases} 4x - 12y \leq -13 \\ 8x + 6y \leq 0 \end{cases}$ $\left(-\frac{3}{4}, \frac{5}{6}\right)$

On a separate sheet of paper, graph each system of inequalities.

Describe the solution.

7.
$$\begin{cases} y \leq x - 6 \\ y > x - 10 \end{cases}$$

$y \leq x - 6$
 $m = 1; b = -6$
 solid line
 shaded below

$y > x - 10$
 $m = 1; b = -10$
 dashed line
 shaded above

The solutions are all points on the solid upper line and between the parallel lines.

8.
$$\begin{cases} y < x + 4 \\ y \geq x - 4 \end{cases}$$

9.
$$\begin{cases} 0.1x + 0.2y \geq 7 \\ 3.2x + 6.4y \geq -32 \end{cases}$$

10.
$$\begin{cases} 5.2x + 3.6y \leq -3 \\ 26x + 18y \leq -2 \end{cases}$$

11.
$$\begin{cases} \frac{5}{6} > 3y - \frac{1}{4} \\ \frac{5}{2} + y > \frac{11}{3} \end{cases}$$

12.
$$\begin{cases} \frac{1}{4} > 5x + \frac{2}{3} \\ \frac{3}{2} + x > \frac{8}{5} \end{cases}$$

Problem Solving

Graph each system on grid paper to show all possible solutions.

Then name three ordered pairs that are solutions.

13. **Online shopping** An online media company sells customers songs for \$1 and TV shows for \$2.50. José wants to spend no more than \$15 but wants to buy at least 4 items (songs and/or shows).

14. **Groceries** Toothpaste costs \$3.50, and toothbrushes cost \$1.25. If Keisha has only \$12.50 and needs more than three toothbrushes or toothpastes, how many of each could she buy?

Spiral Review

15. Graph:
$$\begin{cases} 2x + y = 9 \\ 2x + 2y = 8 \end{cases}$$

Find and describe the solution.

16. Find the x - and y -intercepts of the equation.
 $6x - 9y = 18$

17. Determine whether the sequence could be geometric, arithmetic, or neither. Use a pattern to write the next three terms.
 500, 5, 0.05, 0.0005, ...