

Technology: Graph Systems of Inequalities

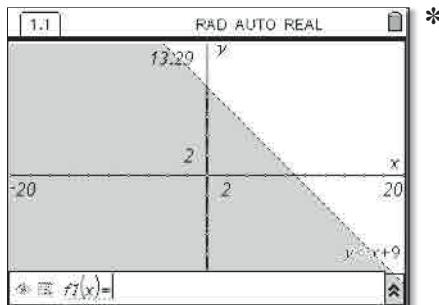
Objective To use a handheld to graph a system of linear inequalities

► You can use a graph to solve a system of linear inequalities.

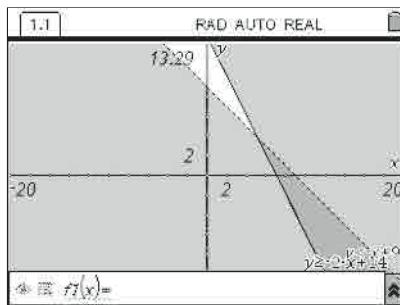
Use a handheld to graph the system: $\begin{cases} x + y < 9 \\ 2x + y \geq 14 \end{cases}$

First, solve each inequality for y .

$$x + y < 9$$


$y < -x + 9$ ← Use the Subtraction Property of Inequality.

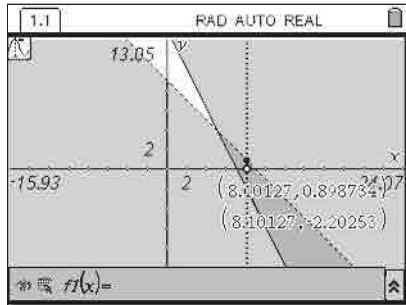
$$2x + y \geq 14$$


$y \geq -2x + 14$ ← Use the Subtraction Property of Inequality.

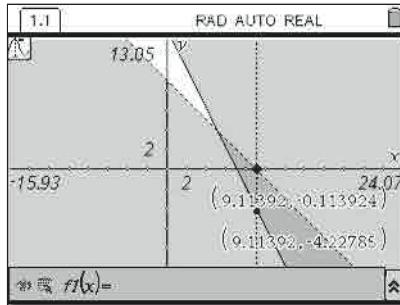
Step 1 Press . Then choose 2 to select **Graphs & Geometry**.

Step 2 Use the key to delete the equals sign. Input $< -x + 9$, then press to graph the inequality.

Step 3 Use the key to delete the equals sign. Input $\geq -2x + 14$, then press to graph the inequality. Use to enter the inequality symbol.



The solution to the system of inequalities is the shaded region where the two graphs overlap.


► You can use the **Trace** command to name two points that are part of a system's solution set.

Step 4 Press menu. Select **Trace**, and then choose **Graph Trace**.

Step 5 Press to select both lines. Then press to move along the lines. Choose a test point that is part of the solution set. $(8, 0)$ is one point.

Step 6 Continue to press to choose another test point. The point $(9, -1)$ is also in the solution set.

So two points that appear to be part of the solution are $(8, 0)$ and $(9, -1)$.

* Window setting adjusted to fit graph

► Since you cannot verify a solution set to a system using a graph, you can use the chosen test points to check the solution algebraically.

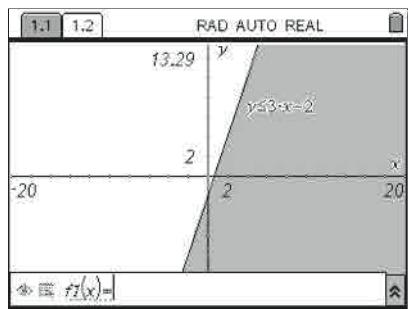
Try: $(8, 0)$

$$\begin{array}{ll} x + y < 9 & 2x + y \geq 14 \\ 8 + 0 < 9 & 2(8) + 0 \geq 14 \\ 8 < 9 \checkmark & 16 \geq 14 \checkmark \end{array}$$

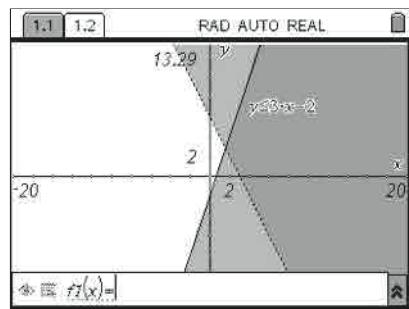
Try: $(9, -1)$

$$\begin{array}{ll} x + y < 9 & 2x + y \geq 14 \\ 9 + -1 < 9 & 2(9) + -1 \geq 14 \\ 8 < 9 \checkmark & 17 \geq 14 \checkmark \end{array}$$

So $(8, 0)$ and $(9, -1)$ are part of the solution set for the inequality.


Example

1


Use a handheld to graph the system. $\begin{cases} y \leq 3x - 2 \\ y > -2x + 6 \end{cases}$

Step 1 Press . Then choose to select **Graphs & Geometry**.

Step 2 Use the key to delete the equals sign. Input $\leq 3x - 2$. Use to enter the inequality symbol. Press to graph the first inequality.

Step 3 Use the key to delete the equals sign. Input $> -2x + 6$, then press to graph the second inequality.

Looking at the graph, the points $(5, 0)$ and $(6, 0)$ appear to be part of the solution set. Choose test points and check the solution set.

Try: $(5, 0)$

$$\begin{array}{ll} y \leq 3x - 2 & y > -2x + 6 \\ 0 \leq 3(5) - 2 & 0 > -2(5) + 6 \\ 0 \leq 13 \checkmark & 0 > -4 \checkmark \end{array}$$

Try: $(6, 0)$

$$\begin{array}{ll} y \leq 3x - 2 & y > -2x + 6 \\ 0 \leq 3(6) - 2 & 0 > -2(6) + 6 \\ 0 \leq 16 \checkmark & 0 > -6 \checkmark \end{array}$$

Try These

Use a handheld to graph the system. Then name two points that are part of the solution set.

1. $\begin{cases} y > 5x \\ y \geq 5x - 4 \end{cases}$

2. $\begin{cases} -4x + y > 8 \\ x + 4y > 8 \end{cases}$

3. $\begin{cases} x - 3y < 15 \\ -6x - 8y \leq -12 \end{cases}$

4. **Discuss and Write** Graph the system $\begin{cases} y \geq 5x + 3 \\ y < 5x - 4 \end{cases}$ using a handheld. Describe and explain the result.

